Simulation-based inference (SBI) has become a widely used framework in applied sciences for estimating the parameters of stochastic models that best explain experimental observations. A central question in this setting is how to effectively combine multiple observations in order to improve parameter inference and obtain sharper posterior distributions. Recent advances in score-based diffusion methods address this problem by constructing a compositional score, obtained by aggregating individual posterior scores within the diffusion process. While it is natural to suspect that the accumulation of individual errors may significantly degrade sampling quality as the number of observations grows, this important theoretical issue has so far remained unexplored. In this paper, we study the compositional score produced by the GAUSS algorithm of Linhart et al. (2024) and establish an upper bound on its mean squared error in terms of both the individual score errors and the number of observations. We illustrate our theoretical findings on a Gaussian example, where all analytical expressions can be derived in a closed form.
翻译:暂无翻译