Tensor networks have been an important concept and technique in many research areas, such as quantum computation and machine learning. We study the exponential complexity of contracting tensor networks on two special graph structures: planar graphs and finite element graphs. We prove that any finite element graph has a $O(d\sqrt{\max\{\Delta,d\}N})$ size edge separator. Furthermore, we develop a $2^{O(d\sqrt{\max\{\Delta,d\}N})}$ time algorithm to contracting a tensor network consisting of $N$ Boolean tensors, whose underlying graph is a finite element graph with maximum degree $\Delta$ and has no face with more than $d$ boundary edges in the planar skeleton, based on the $2^{O(\sqrt{\Delta N})}$ time algorithm \cite{fastcounting} for planar Boolean tensor network contractions. We use two methods to accelerate the exponential algorithms by transferring high-dimensional tensors to low-dimensional tensors. We put up a $O(k)$ size planar gadget for any Boolean symmetric tensor of dimension $k$, where the gadget only consists of Boolean tensors with dimension no more than $5$. Another method is decomposing any tensor into a series of vectors (unary functions), according to its \emph{CP decomposition} \cite{tensor-rank}. We also prove the sub-exponential time lower bound for contracting tensor networks under the counting \emph{Exponential Time Hypothesis} (\#ETH) holds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员