Federated learning (FL) offers a privacy-preserving paradigm for machine learning, but its application in intrusion detection systems (IDS) within IoT networks is challenged by severe class imbalance, non-IID data, and high communication overhead.These challenges severely degrade the performance of conventional FL methods in real-world network traffic classification. To overcome these limitations, we propose Sentinel, a personalized federated IDS (pFed-IDS) framework that incorporates a dual-model architecture on each client, consisting of a personalized teacher and a lightweight shared student model. This design effectively balances deep local adaptation with efficient global model consensus while preserving client privacy by transmitting only the compact student model, thus reducing communication costs. Sentinel integrates three key mechanisms to ensure robust performance: bidirectional knowledge distillation with adaptive temperature scaling, multi-faceted feature alignment, and class-balanced loss functions. Furthermore, the server employs normalized gradient aggregation with equal client weighting to enhance fairness and mitigate client drift. Extensive experiments on the IoTID20 and 5GNIDD benchmark datasets demonstrate that Sentinel significantly outperforms state-of-the-art federated methods, establishing a new performance benchmark, especially under extreme data heterogeneity, while maintaining communication efficiency.
翻译:暂无翻译