Self-supervised learning has become an increasingly important paradigm in the domain of machine intelligence. Furthermore, evidence for self-supervised adaptation, such as contrastive formulations, has emerged in recent computational neuroscience and brain-inspired research. Nevertheless, current work on self-supervised learning relies on biologically implausible credit assignment -- in the form of backpropagation of errors -- and feedforward inference, typically a forward-locked pass. Predictive coding, in its mechanistic form, offers a biologically plausible means to sidestep these backprop-specific limitations. However, unsupervised predictive coding rests on learning a generative model of raw pixel input (akin to ``generative AI'' approaches), which entails predicting a potentially high dimensional input; on the other hand, supervised predictive coding, which learns a mapping between inputs to target labels, requires human annotation, and thus incurs the drawbacks of supervised learning. In this work, we present a scheme for self-supervised learning within a neurobiologically plausible framework that appeals to the free energy principle, constructing a new form of predictive coding that we call meta-representational predictive coding (MPC). MPC sidesteps the need for learning a generative model of sensory input (e.g., pixel-level features) by learning to predict representations of sensory input across parallel streams, resulting in an encoder-only learning and inference scheme. This formulation rests on active inference (in the form of sensory glimpsing) to drive the learning of representations, i.e., the representational dynamics are driven by sequences of decisions made by the model to sample informative portions of its sensorium.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年11月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员