Stochastic Volterra equations (SVEs) serve as mathematical models for the time evolutions of random systems with memory effects and irregular behaviour. We introduce neural stochastic Volterra equations as a physics-inspired architecture, generalizing the class of neural stochastic differential equations, and provide some theoretical foundation. Numerical experiments on various SVEs, like the disturbed pendulum equation, the generalized Ornstein--Uhlenbeck process, the rough Heston model and a monetary reserve dynamics, are presented, comparing the performance of neural SVEs, neural SDEs and Deep Operator Networks (DeepONets).
翻译:随机Volterra方程(SVEs)是描述具有记忆效应和非规则行为的随机系统时间演化的数学模型。本文提出神经随机Volterra方程作为一种受物理学启发的架构,它推广了神经随机微分方程类别,并提供了相应的理论基础。通过对多种SVEs(如受扰摆方程、广义Ornstein-Uhlenbeck过程、粗糙Heston模型及货币储备动力学)进行数值实验,比较了神经SVEs、神经SDEs与深度算子网络(DeepONets)的性能表现。