Stochastic Volterra equations (SVEs) serve as mathematical models for the time evolutions of random systems with memory effects and irregular behaviour. We introduce neural stochastic Volterra equations as a physics-inspired architecture, generalizing the class of neural stochastic differential equations, and provide some theoretical foundation. Numerical experiments on various SVEs, like the disturbed pendulum equation, the generalized Ornstein--Uhlenbeck process, the rough Heston model and a monetary reserve dynamics, are presented, comparing the performance of neural SVEs, neural SDEs and Deep Operator Networks (DeepONets).


翻译:随机Volterra方程(SVEs)是描述具有记忆效应和非规则行为的随机系统时间演化的数学模型。本文提出神经随机Volterra方程作为一种受物理学启发的架构,它推广了神经随机微分方程类别,并提供了相应的理论基础。通过对多种SVEs(如受扰摆方程、广义Ornstein-Uhlenbeck过程、粗糙Heston模型及货币储备动力学)进行数值实验,比较了神经SVEs、神经SDEs与深度算子网络(DeepONets)的性能表现。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员