This paper develops a framework to conduct a counterfactual analysis to regulate matching markets with regional constraints that impose lower and upper bounds on the number of matches in each region. Our work is motivated by the Japan Residency Matching Program, in which the policymaker wants to guarantee the least number of doctors working in rural regions to achieve the minimum standard of service. Among the multiple possible policies that satisfy such constraints, a policymaker wants to choose the best. To this end, we develop a discrete choice model approach that estimates the utility functions of agents from observed data and predicts agents' behavior under different counterfactual policies. Our framework also allows the policymaker to design the welfare-maximizing tax scheme, which outperforms the policy currently used in practice. Furthermore, a numerical experiment illustrates how our method works.


翻译:本文开发了一个框架,以进行反事实分析,规范市场与区域制约的匹配,这些制约对每个区域的匹配数量造成下限和上限。我们的工作受到日本居住匹配方案的推动,在该方案中,决策者希望保证农村地区最少的医生达到最低服务标准。在满足这些制约的多种可能政策中,决策者希望选择最佳政策。为此,我们制定了一个独立选择模式,根据观察到的数据估算代理人的效用功能,并预测代理人在不同的反事实政策下的行为。我们的框架还允许决策者设计福利最大化税收计划,该计划比目前实际使用的政策要好。此外,一个数字实验展示了我们的方法如何运作。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2022年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员