Dexterous manipulation tasks often require switching between different contact modes, such as rolling, sliding, sticking, or non-contact contact modes. When formulating dexterous manipulation tasks as a trajectory optimization problem, a common approach is to decompose these tasks into sub-tasks for each contact mode, which are each solved independently. Optimizing each sub-task independently can limit performance, as optimizing contact points, contact forces, or other variables without information about future sub-tasks can place the system in a state from which it is challenging to make progress on subsequent sub-tasks. Further, optimizing these sub-tasks is very computationally expensive. To address these challenges, we propose Amortized Value Optimization (AVO), which introduces a learned value function that predicts the total future task performance. By incorporating this value function into the cost of the trajectory optimization at each planning step, the value function gradients guide the optimizer toward states that minimize the cost in future sub-tasks. This effectively bridges separately optimized sub-tasks, and accelerates the optimization by reducing the amount of online computation needed. We validate AVO on a screwdriver grasping and turning task in both simulation and real world experiments, and show improved performance even with 50% less computational budget compared to trajectory optimization without the value function.
翻译:暂无翻译