Let $\mathscr{R}_{e,m}$ denote a finite commutative chain ring of even characteristic with maximal ideal $\langle u \rangle$ of nilpotency index $e \geq 3,$ Teichm$\ddot{u}$ller set $\mathcal{T}_{m},$ and residue field $\mathscr{R}_{e,m}/\langle u \rangle$ of order $2^m.$ Suppose that $2 \in \langle u^{\kappa}\rangle \setminus \langle u^{\kappa+1}\rangle$ for some odd integer $\kappa$ with $3 \leq \kappa \leq e.$ In this paper, we first develop a recursive method to construct a self-orthogonal code $\mathscr{D}_e$ of type $\{\lambda_1, \lambda_2, \ldots, \lambda_e\}$ and length $n$ over $\mathscr{R}_{e,m}$ from a chain $\mathcal{C}^{(1)}\subseteq \mathcal{C}^{(2)} \subseteq \cdots \subseteq \mathcal{C}^{(\lceil \frac{e}{2} \rceil)} $ of self-orthogonal codes of length $n$ over $\mathcal{T}_{m},$ and vice versa, subject to certain conditions, where $\lambda_1,\lambda_2,\ldots,\lambda_e$ are non-negative integers satisfying $2\lambda_1+2\lambda_2+\cdots+2\lambda_{e-i+1}+\lambda_{e-i+2}+\lambda_{e-i+3}+\cdots+\lambda_i \leq n$ for $\lceil \frac{e+1}{2} \rceil \leq i\leq e,$ and $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$ denote the floor and ceiling functions, respectively. This construction ensures that $Tor_i(\mathscr{D}_e)=\mathcal{C}^{(i)}$ for $1 \leq i \leq \lceil \frac{e}{2} \rceil.$ With the help of this recursive construction method and by applying results from group theory and finite geometry, we obtain explicit enumeration formulae for all self-orthogonal and self-dual codes of an arbitrary length over $\mathscr{R}_{e,m}.$ We also illustrate these results with some examples.
翻译:暂无翻译