Fluid thermodynamics underpins atmospheric dynamics, climate science, industrial applications, and energy systems. However, direct numerical simulations (DNS) of such systems can be computationally prohibitive. To address this, we present a novel physics-informed spatiotemporal surrogate model for Rayleigh-B\'enard convection (RBC), a canonical example of convective fluid flow. Our approach combines convolutional neural networks, for spatial dimension reduction, with an innovative recurrent architecture, inspired by large language models, to model long-range temporal dynamics. Inference is penalized with respect to the governing partial differential equations to ensure physical interpretability. Since RBC exhibits turbulent behavior, we quantify uncertainty using a conformal prediction framework. This model replicates key physical features of RBC dynamics while significantly reducing computational cost, offering a scalable alternative to DNS for long-term simulations.
翻译:暂无翻译