In this work, we propose two information generating functions: general weighted information and relative information generating functions, and study their properties. { It is shown that the general weighted information generating function (GWIGF) is shift-dependent and can be expressed in terms of the weighted Shannon entropy. The GWIGF of a transformed random variable has been obtained in terms of the GWIGF of a known distribution. Several bounds of the GWIGF have been proposed. We have obtained sufficient conditions under which the GWIGFs of two distributions are comparable. Further, we have established a connection between the weighted varentropy and varentropy with proposed GWIGF. An upper bound for GWIGF of the sum of two independent random variables is derived. The effect of general weighted relative information generating function (GWRIGF) for two transformed random variables under strictly monotone functions has been studied. } Further, these information generating functions are studied for escort, generalized escort and mixture distributions. {Specially, we propose weighted $\beta$-cross informational energy and establish a close connection with GWIGF for escort distribution.} The residual versions of the newly proposed generating functions are considered and several similar properties have been explored. A non-parametric estimator of the residual general weighted information generating function is proposed. A simulated data set and two real data sets are considered for the purpose of illustration. { Finally, we have compared the non-parametric approach with a parametric approach in terms of the absolute bias and mean squared error values.}


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员