The level-$k$ $\ell_1$-Fourier weight of a Boolean function refers to the sum of absolute values of its level-$k$ Fourier coefficients. Fourier growth refers to the growth of these weights as $k$ grows. It has been extensively studied for various computational models, and bounds on the Fourier growth, even for the first few levels, have proven useful in learning theory, circuit lower bounds, pseudorandomness, and quantum-classical separations. We investigate the Fourier growth of certain functions that naturally arise from communication protocols for XOR functions (partial functions evaluated on the bitwise XOR of the inputs to Alice and Bob). If a protocol $\mathcal C$ computes an XOR function, then $\mathcal C(x,y)$ is a function of the parity $x\oplus y$. This motivates us to analyze the XOR-fiber of $\mathcal C$, defined as $h(z):=\mathbb E_{x,y}[\mathcal C(x,y)|x\oplus y=z]$. We present improved Fourier growth bounds for the XOR-fibers of protocols that communicate $d$ bits. For the first level, we show a tight $O(\sqrt d)$ bound and obtain a new coin theorem, as well as an alternative proof for the tight randomized communication lower bound for Gap-Hamming. For the second level, we show an $d^{3/2}\cdot\mathrm{polylog}(n)$ bound, which improves the previous $O(d^2)$ bound by Girish, Raz, and Tal (ITCS 2021) and implies a polynomial improvement on the randomized communication lower bound for the XOR-lift of Forrelation, extending its quantum-classical gap. Our analysis is based on a new way of adaptively partitioning a relatively large set in Gaussian space to control its moments in all directions. We achieve this via martingale arguments and allowing protocols to transmit real values. We also show a connection between Fourier growth and lifting theorems with constant-sized gadgets as a potential approach to prove optimal bounds for the second level and beyond.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员