Score-based diffusion generative models have recently emerged as a powerful tool for modelling complex data distributions. These models aim at learning the score function, which defines a map from a known probability distribution to the target data distribution via deterministic or stochastic differential equations (SDEs). The score function is typically estimated from data using a variety of approximation techniques, such as denoising or sliced score matching, Hyv\"arien's method, or Schr\"odinger bridges. In this paper, we derive an exact, closed-form, expression for the score function for a broad class of nonlinear diffusion generative models. Our approach combines modern stochastic analysis tools such as Malliavin derivatives and their adjoint operators (Skorokhod integrals or Malliavin Divergence) with a new Bismut-type formula. The resulting expression for the score function can be written entirely in terms of the first and second variation processes, with all Malliavin derivatives systematically eliminated, thereby enhancing its practical applicability. The theoretical framework presented in this work offers a principled foundation for advancing score estimation methods in generative modelling, enabling the design of new sampling algorithms for complex probability distributions. Our results can be extended to broader classes of stochastic differential equations, opening new directions for the development of score-based diffusion generative models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员