Anomaly detection is widely used in a broad range of domains from cybersecurity to manufacturing, finance, and so on. Deep learning based anomaly detection has recently drawn much attention because of its superior capability of recognizing complex data patterns and identifying outliers accurately. However, deep learning models are typically iteratively optimized in a central server with input data gathered from edge devices, and such data transfer between edge devices and the central server impose substantial overhead on the network and incur additional latency and energy consumption. To overcome this problem, we propose a fully-automated, lightweight, statistical learning based anomaly detection framework called LightESD. It is an on-device learning method without the need for data transfer between edge and server, and is extremely lightweight that most low-end edge devices can easily afford with negligible delay, CPU/memory utilization, and power consumption. Yet, it achieves highly competitive detection accuracy. Another salient feature is that it can auto-adapt to probably any dataset without manually setting or configuring model parameters or hyperparameters, which is a drawback of most existing methods. We focus on time series data due to its pervasiveness in edge applications such as IoT. Our evaluation demonstrates that LightESD outperforms other SOTA methods on detection accuracy, efficiency, and resource consumption. Additionally, its fully automated feature gives it another competitive advantage in terms of practical usability and generalizability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员