Subgraph matching has garnered increasing attention for its diverse real-world applications. Given the dynamic nature of real-world graphs, addressing evolving scenarios without incurring prohibitive overheads has been a focus of research. However, existing approaches for dynamic subgraph matching often proceed serially, retrieving incremental matches for each updated edge individually. This approach falls short when handling batch data updates, leading to a decrease in system throughput. Leveraging the parallel processing power of GPUs, which can execute a massive number of cores simultaneously, has been widely recognized for performance acceleration in various domains. Surprisingly, systematic exploration of subgraph matching in the context of batch-dynamic graphs, particularly on a GPU platform, remains untouched. In this paper, we bridge this gap by introducing an efficient framework, GAMMA (GPU-Accelerated Batch-Dynamic Subgraph Matching). Our approach features a DFS-based warp-centric batch-dynamic subgraph matching algorithm. To ensure load balance in the DFS-based search, we propose warp-level work stealing via shared memory. Additionally, we introduce coalesced search to reduce redundant computations. Comprehensive experiments demonstrate the superior performance of GAMMA. Compared to state-of-the-art algorithms, GAMMA showcases a performance improvement up to hundreds of times.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
0+阅读 · 2024年3月7日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年3月12日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
0+阅读 · 2024年3月7日
Arxiv
11+阅读 · 2018年4月25日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员