We consider the online busy time scheduling problem motivated by energy and cost minimization in cloud computing systems. The input is a set of jobs $J=\{1,\dots,n\}$ where each job $j\in J$ has a release time $r_j$, deadline $d_j$, and processing time $p_j$. $m$ homogeneous machines are given with a parallelism parameter $g\geq 1$, which is the maximal number of jobs that can be processed simultaneously on a machine. A machine is called \emph{busy} when at least one job is being processed. The objective is to find a feasible schedule for all jobs such that the sum of busy times over all machines is minimized. We consider the online setting, where a job $j\in J$ is revealed at its release time $r_j$. We show multiple algorithms in different problem variants that have a tight competitive ratio. For the busy time scheduling problem, uniform processing time jobs, and where the parallelism is unbounded ($g=\infty$), we show a $2$-competitive algorithm and an online adversary that shows that the algorithm is tight. For the setting where jobs have arbitrary processing time, agreeable deadlines, and the parallelism is unbounded, we show a different tight $2$-competitive algorithm. For machines with bounded parallelism, we show lower bounds on the competitive ratio of any online algorithm when $g$ is small. Furthermore, we improve the setting with arbitrary jobs where the algorithm is allowed lookahead.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
69+阅读 · 2022年9月7日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年3月8日
Arxiv
69+阅读 · 2022年9月7日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2019年3月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员