This paper is the second in a series of studies on developing efficient artificial intelligence-based approaches to pathfinding on extremely large graphs (e.g. $10^{70}$ nodes) with a focus on Cayley graphs and mathematical applications. The open-source CayleyPy project is a central component of our research. The present paper proposes a novel combination of a reinforcement learning approach with a more direct diffusion distance approach from the first paper. Our analysis includes benchmarking various choices for the key building blocks of the approach: architectures of the neural network, generators for the random walks and beam search pathfinding. We compared these methods against the classical computer algebra system GAP, demonstrating that they "overcome the GAP" for the considered examples. As a particular mathematical application we examine the Cayley graph of the symmetric group with cyclic shift and transposition generators. We provide strong support for the OEIS-A186783 conjecture that the diameter is equal to n(n-1)/2 by machine learning and mathematical methods. We identify the conjectured longest element and generate its decomposition of the desired length. We prove a diameter lower bound of n(n-1)/2-n/2 and an upper bound of n(n-1)/2+ 3n by presenting the algorithm with given complexity. We also present several conjectures motivated by numerical experiments, including observations on the central limit phenomenon (with growth approximated by a Gumbel distribution), the uniform distribution for the spectrum of the graph, and a numerical study of sorting networks. To stimulate crowdsourcing activity, we create challenges on the Kaggle platform and invite contributions to improve and benchmark approaches on Cayley graph pathfinding and other tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月30日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员