Recent advance in diffusion models incorporates the Stochastic Differential Equation (SDE), which brings the state-of-the art performance on image generation tasks. This paper improves such diffusion models by analyzing the model at the zero diffusion time. In real datasets, the score function diverges as the diffusion time ($t$) decreases to zero, and this observation leads an argument that the score estimation fails at $t=0$ with any neural network structure. Subsequently, we introduce Unbounded Diffusion Model (UDM) that resolves the score diverging problem with an easily applicable modification to any diffusion models. Additionally, we introduce a new SDE that overcomes the theoretic and practical limitations of Variance Exploding SDE. On top of that, the introduced Soft Truncation method improves the sample quality by mitigating the loss scale issue that happens at $t=0$. We further provide a theoretic result of the proposed method to uncover the behind mechanism of the diffusion models.


翻译:最新扩散模型的进步包括Stochatic different Equation (SDE), 它带来了图像生成任务的最新性能。 本文通过在零扩散时间分析模型来改进这种扩散模型。 在真实的数据集中, 分数函数随着扩散时间( t$) 降低到零而有所不同, 这一观察引出了这样一个论点: 任何神经网络结构的分数估计值以$t=0美元为单位计算失败。 随后, 我们引入了无限制Difmulation 模型( UDM), 解决分数差异问题, 对任何传播模型进行易于应用的修改。 此外, 我们引入了新的SDE, 克服了差异开发 SDE 的理论和实践局限性。 除此之外, 引入的 Soft 调整方法通过降低在$t=0美元上发生的损失规模问题, 提高了样本质量。 我们还提供了拟议方法的理论结果, 以发现扩散模型的后机制。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
3+阅读 · 2020年9月30日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
3+阅读 · 2020年9月30日
Top
微信扫码咨询专知VIP会员