If a language model cannot reliably disclose its AI identity in expert contexts, users cannot trust its competence boundaries. This study examines self-transparency in models assigned professional personas within high-stakes domains where false expertise risks user harm. Using a common-garden design, sixteen open-weight models (4B--671B parameters) were audited across 19,200 trials. Models exhibited sharp domain-specific inconsistency: a Financial Advisor persona elicited 30.8% disclosure initially, while a Neurosurgeon persona elicited only 3.5%. This creates preconditions for a "Reverse Gell-Mann Amnesia" effect, where transparency in some domains leads users to overgeneralize trust to contexts where disclosure fails. Disclosure ranged from 2.8% to 73.6%, with a 14B model reaching 61.4% while a 70B produced just 4.1%. Model identity predicted behavior better than parameter count ($ΔR_{adj}^{2} = 0.359$ vs 0.018). Reasoning optimization actively suppressed self-transparency in some models, with reasoning variants showing up to 48.4% lower disclosure than base counterparts. Bayesian validation with Rogan--Gladen correction confirmed robustness to measurement error ($κ= 0.908$). These findings demonstrate transparency reflects training factors rather than scale. Organizations cannot assume safety properties transfer to deployment contexts, requiring deliberate behavior design and empirical verification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员