Comparing counterfactual distributions can provide more nuanced and valuable measures for causal effects, going beyond typical summary statistics such as averages. In this work, we consider characterizing causal effects via distributional distances, focusing on two kinds of target parameters. The first is the counterfactual outcome density. We propose a doubly robust-style estimator for the counterfactual density and study its rates of convergence and limiting distributions. We analyze asymptotic upper bounds on the $L_q$ and the integrated $L_q$ risks of the proposed estimator, and propose a bootstrap-based confidence band. The second is a novel distributional causal effect defined by the $L_1$ distance between different counterfactual distributions. We study three approaches for estimating the proposed distributional effect: smoothing the counterfactual density, smoothing the $L_1$ distance, and imposing a margin condition. For each approach, we analyze asymptotic properties and error bounds of the proposed estimator, and discuss potential advantages and disadvantages. We go on to present a bootstrap approach for obtaining confidence intervals, and propose a test of no distributional effect. We conclude with a numerical illustration and a real-world example.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月17日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员