Meta-reinforcement learning enables artificial agents to learn from related training tasks and adapt to new tasks efficiently with minimal interaction data. However, most existing research is still limited to narrow task distributions that are parametric and stationary, and does not consider out-of-distribution tasks during the evaluation, thus, restricting its application. In this paper, we propose MoSS, a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning to address this challenge. We extend meta-RL to broad non-parametric task distributions which have never been explored before, and also achieve state-of-the-art results in non-stationary and out-of-distribution tasks. Specifically, MoSS consists of a task inference module and a policy module. We utilize the Gaussian mixture model for task representation to imitate the parametric and non-parametric task variations. Additionally, our online adaptation strategy enables the agent to react at the first sight of a task change, thus being applicable in non-stationary tasks. MoSS also exhibits strong generalization robustness in out-of-distributions tasks which benefits from the reliable and robust task representation. The policy is built on top of an off-policy RL algorithm and the entire network is trained completely off-policy to ensure high sample efficiency. On MuJoCo and Meta-World benchmarks, MoSS outperforms prior works in terms of asymptotic performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization robustness on broad and diverse task distributions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
相关基金
Top
微信扫码咨询专知VIP会员