Many optimization problems require hyperparameters, i.e., parameters that must be pre-specified in advance, such as regularization parameters and parametric regularizers in variational regularization methods for inverse problems, and dictionaries in compressed sensing. A data-driven approach to determine appropriate hyperparameter values is via a nested optimization framework known as bilevel learning. Even when it is possible to employ a gradient-based solver to the bilevel optimization problem, construction of the gradients, known as hypergradients, is computationally challenging, each one requiring both a solution of a minimization problem and a linear system solve. These systems do not change much during the iterations, which motivates us to apply recycling Krylov subspace methods, wherein information from one linear system solve is re-used to solve the next linear system. Existing recycling strategies often employ eigenvector approximations called Ritz vectors. In this work we propose a novel recycling strategy based on a new concept, Ritz generalized singular vectors, which acknowledge the bilevel setting. Additionally, while existing iterative methods primarily terminate according to the residual norm, this new concept allows us to define a new stopping criterion that directly approximates the error of the associated hypergradient. The proposed approach is validated through extensive numerical testing in the context of inverse problems in imaging.
翻译:暂无翻译