Financial networks raise a significant computational challenge in identifying insolvent firms and evaluating their exposure to systemic risk. This task, known as the clearing problem, is computationally tractable when dealing with simple debt contracts. However under the presence of certain derivatives called credit default swaps (CDSes) the clearing problem is $\textsf{FIXP}$-complete. Existing techniques only show $\textsf{PPAD}$-hardness for finding an $\epsilon$-solution for the clearing problem with CDSes within an unspecified small range for $\epsilon$. We present significant progress in both facets of the clearing problem: (i) intractability of approximate solutions; (ii) algorithms and heuristics for computable solutions. Leveraging $\textsf{Pure-Circuit}$ (FOCS'22), we provide the first explicit inapproximability bound for the clearing problem involving CDSes. Our primal contribution is a reduction from $\textsf{Pure-Circuit}$ which establishes that finding approximate solutions is $\textsf{PPAD}$-hard within a range of roughly 5%. To alleviate the complexity of the clearing problem, we identify two meaningful restrictions of the class of financial networks motivated by regulations: (i) the presence of a central clearing authority; and (ii) the restriction to covered CDSes. We provide the following results: (i.) The $\textsf{PPAD}$-hardness of approximation persists when central clearing authorities are introduced; (ii.) An optimisation-based method for solving the clearing problem with central clearing authorities; (iii.) A polynomial-time algorithm when the two restrictions hold simultaneously.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2022年3月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员