Statistical inference from data generated by multi-armed bandit (MAB) algorithms is challenging due to their adaptive, non-i.i.d. nature. A classical manifestation is that sample averages of arm rewards under bandit sampling may fail to satisfy a central limit theorem. Lai and Wei's stability condition provides a sufficient, and essentially necessary criterion, for asymptotic normality in bandit problems. While the celebrated Upper Confidence Bound (UCB) algorithm satisfies this stability condition, it is not minimax optimal, raising the question of whether minimax optimality and statistical stability can be achieved simultaneously. In this paper, we analyze the stability properties of a broad class of bandit algorithms that are based on the optimism principle. We establish general structural conditions under which such algorithms violate the Lai-Wei stability criterion. As a consequence, we show that widely used minimax-optimal UCB-style algorithms, including MOSS, Anytime-MOSS, Vanilla-MOSS, ADA-UCB, OC-UCB, KL-MOSS, KL-UCB++, KL-UCB-SWITCH, and Anytime KL-UCB-SWITCH, are unstable. We further complement our theoretical results with numerical simulations demonstrating that, in all these cases, the sample means fail to exhibit asymptotic normality. Overall, our findings suggest a fundamental tension between stability and minimax optimal regret, raising the question of whether it is possible to design bandit algorithms that achieve both. Understanding whether such simultaneously stable and minimax optimal strategies exist remains an important open direction.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员