We study the acceleration of the Local Polynomial Interpolation-based Gradient Descent method (LPI-GD) recently proposed for the approximate solution of empirical risk minimization problems (ERM). We focus on loss functions that are strongly convex and smooth with condition number $\sigma$. We additionally assume the loss function is $\eta$-H\"older continuous with respect to the data. The oracle complexity of LPI-GD is $\tilde{O}\left(\sigma m^d \log(1/\varepsilon)\right)$ for a desired accuracy $\varepsilon$, where $d$ is the dimension of the parameter space, and $m$ is the cardinality of an approximation grid. The factor $m^d$ can be shown to scale as $O((1/\varepsilon)^{d/2\eta})$. LPI-GD has been shown to have better oracle complexity than gradient descent (GD) and stochastic gradient descent (SGD) for certain parameter regimes. We propose two accelerated methods for the ERM problem based on LPI-GD and show an oracle complexity of $\tilde{O}\left(\sqrt{\sigma} m^d \log(1/\varepsilon)\right)$. Moreover, we provide the first empirical study on local polynomial interpolation-based gradient methods and corroborate that LPI-GD has better performance than GD and SGD in some scenarios, and the proposed methods achieve acceleration.


翻译:我们最近为实验风险最小化问题(ERM)的近似解决方案提出了基于本地聚合内插的梯度法(LPI-GD)的加速性研究。我们侧重于以条件号$\sgma$为基数的强烈共振和顺畅的损失函数。我们还假设,数据的损失函数是$(eta$-H\”older 连续的。LPI-GD的异常复杂性是$\tilde{O ⁇ left(sigma m ⁇ d\log(1/\varepsilon)\right)$(美元),以达到理想的精确度$\varepsilon,美元是参数空间的维度,而美元是近似基数网的基度。 系数$%d$(1/\\\\'oldolder)可以显示为美元(1/\\\\\\\\\etta}。 LPI-GD-G(GG)和Stochastel 梯系(SG)的某些参数系统,我们建议了两种加速方法,根据IMLPI-ral-ral_GDLGDLDLDSLSLS和IMLDLSLSLSLSLSLSLS-I和IMLS-ILS-ILS-ILBLBLBLS 和IMLS)的精度, 的加速性方法显示了两种方法。

0
下载
关闭预览

相关内容

经验风险最小化(ERM)是统计学习理论中的一个原则,它定义了一系列学习算法,并用于给出其性能的理论界限。经验风险最小化的策略认为,经验风险最小的模型是最优的模型。根据这一策略,按照经验风险最小化求最优模型就是求解最优化问题。
专知会员服务
51+阅读 · 2020年12月14日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员