Coordinated multi-robot navigation is an essential ability for a team of robots operating in diverse environments. Robot teams often need to maintain specific formations, such as wedge formations, to enhance visibility, positioning, and efficiency during fast movement. However, complex environments such as narrow corridors challenge rigid team formations, which makes effective formation control difficult in real-world environments. To address this challenge, we introduce a novel Adaptive Formation with Oscillation Reduction (AFOR) approach to improve coordinated multi-robot navigation. We develop AFOR under the theoretical framework of hierarchical learning and integrate a spring-damper model with hierarchical learning to enable both team coordination and individual robot control. At the upper level, a graph neural network facilitates formation adaptation and information sharing among the robots. At the lower level, reinforcement learning enables each robot to navigate and avoid obstacles while maintaining the formations. We conducted extensive experiments using Gazebo in the Robot Operating System (ROS), a high-fidelity Unity3D simulator with ROS, and real robot teams. Results demonstrate that AFOR enables smooth navigation with formation adaptation in complex scenarios and outperforms previous methods. More details of this work are provided on the project website: https://hcrlab.gitlab.io/project/afor.
翻译:暂无翻译