We prove a few new lower bounds on the randomized competitive ratio for the $k$-server problem and other related problems, resolving some long-standing conjectures. In particular, for metrical task systems (MTS) we asympotically settle the competitive ratio and obtain the first improvement to an existential lower bound since the introduction of the model 35 years ago (in 1987). More concretely, we show: 1. There exist $(k+1)$-point metric spaces in which the randomized competitive ratio for the $k$-server problem is $\Omega(\log^2 k)$. This refutes the folklore conjecture (which is known to hold in some families of metrics) that in all metric spaces with at least $k+1$ points, the competitive ratio is $\Theta(\log k)$. 2. Consequently, there exist $n$-point metric spaces in which the randomized competitive ratio for MTS is $\Omega(\log^2 n)$. This matches the upper bound that holds for all metrics. The previously best existential lower bound was $\Omega(\log n)$ (which was known to be tight for some families of metrics). 3. For all $k<n\in\mathbb N$, for *all* $n$-point metric spaces the randomized $k$-server competitive ratio is at least $\Omega(\log k)$, and consequently the randomized MTS competitive ratio is at least $\Omega(\log n)$. These universal lower bounds are asymptotically tight. The previous bounds were $\Omega(\log k/\log\log k)$ and $\Omega(\log n/\log \log n)$, respectively. 4. The randomized competitive ratio for the $w$-set metrical service systems problem, and its equivalent width-$w$ layered graph traversal problem, is $\Omega(w^2)$. This slightly improves the previous lower bound and matches the recently discovered upper bound. 5. Our results imply improved lower bounds for other problems like $k$-taxi, distributed paging and metric allocation. These lower bounds share a common thread, and other than the third bound, also a common construction.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员