This work presents an evaluation of CNN models and data augmentation to carry out the hierarchical localization of a mobile robot by using omnidireccional images. In this sense, an ablation study of different state-of-the-art CNN models used as backbone is presented and a variety of data augmentation visual effects are proposed for addressing the visual localization of the robot. The proposed method is based on the adaption and re-training of a CNN with a dual purpose: (1) to perform a rough localization step in which the model is used to predict the room from which an image was captured, and (2) to address the fine localization step, which consists in retrieving the most similar image of the visual map among those contained in the previously predicted room by means of a pairwise comparison between descriptors obtained from an intermediate layer of the CNN. In this sense, we evaluate the impact of different state-of-the-art CNN models such as ConvNeXt for addressing the proposed localization. Finally, a variety of data augmentation visual effects are separately employed for training the model and their impact is assessed. The performance of the resulting CNNs is evaluated under real operation conditions, including changes in the lighting conditions. Our code is publicly available on the project website https://github.com/juanjo-cabrera/IndoorLocalizationSingleCNN.git


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员