We study the maximum likelihood estimation (MLE) in the matrix-variate deviated models where the data are generated from the density function $(1-\lambda^{*})h_{0}(x)+\lambda^{*}f(x|\mu^{*}, \Sigma^{*})$ where $h_{0}$ is a known function, $\lambda^{*} \in [0,1]$ and $(\mu^{*}, \Sigma^{*})$ are unknown parameters to estimate. The main challenges in deriving the convergence rate of the MLE mainly come from two issues: (1) The interaction between the function $h_{0}$ and the density function $f$; (2) The deviated proportion $\lambda^{*}$ can go to the extreme points of $[0,1]$ as the sample size goes to infinity. To address these challenges, we develop the distinguishability condition to capture the linear independent relation between the function $h_{0}$ and the density function $f$. We then provide comprehensive convergence rates of the MLE via the vanishing rate of $\lambda^{*}$ to 0 as well as the distinguishability of $h_{0}$ and $f$.


翻译:我们研究了矩阵变差模型中的最大可能性估计值(MLE),其中数据来自密度函数$(1-\lambda ⁇ )h ⁇ 0}(x)<lambda ⁇ ff(x ⁇ mu ⁇,\Sigma ⁇ )$($h ⁇ 0}美元是已知函数,美元=lambda ⁇ 美元=美元=[0,1美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=%=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元===美元======美元==美元=美元=美元==美元==美元=美元=美元=美元=美元=美元=美元=美元===美元=美元==美元=美元=美元=美元==美元===美元=美元=美元=美元=美元=====美元========美元=======美元=美元====美元==========================美元========================================================================================================================================================

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2019年4月9日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员