Dataflow hardware designs enable efficient FPGA implementations via high-level synthesis (HLS), but correctly sizing first-in-first-out (FIFO) channel buffers remains challenging. FIFO sizes are user-defined and balance latency and area-undersized FIFOs cause stalls and potential deadlocks, while oversized ones waste memory. Determining optimal sizes is non-trivial: existing methods rely on restrictive assumptions, conservative over-allocation, or slow RTL simulations. We emphasize that runtime-based analyses (i.e., simulation) are the only reliable way to ensure deadlock-free FIFO optimization for data-dependent designs. We present FIFOAdvisor, a framework that automatically determines FIFO sizes in HLS designs. It leverages LightningSim, a 99.9\% cycle-accurate simulator supporting millisecond-scale incremental runs with new FIFO configurations. FIFO sizing is formulated as a dual-objective black-box optimization problem, and we explore heuristic and search-based methods to characterize the latency-resource trade-off. FIFOAdvisor also integrates with Stream-HLS, a framework for optimizing affine dataflow designs lowered from C++, MLIR, or PyTorch, enabling deeper optimization of FIFOs in these workloads. We evaluate FIFOAdvisor on Stream-HLS design benchmarks spanning linear algebra and deep learning workloads. Our results reveal Pareto-optimal latency-memory frontiers across optimization strategies. Compared to baseline designs, FIFOAdvisor achieves much lower memory usage with minimal delay overhead. Additionally, it delivers significant runtime speedups over traditional HLS/RTL co-simulation, making it practical for rapid design space exploration. We further demonstrate its capability on a complex accelerator with data-dependent control flow. Code and results: https://github.com/sharc-lab/fifo-advisor


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员