Addressing the current lack of a standardized habitat classification system for cultivated land ecosystems, incomplete coverage of the habitat types, and the inability of existing models to effectively integrate semantic and texture features-resulting in insufficient segmentation accuracy and blurred boundaries for multi-scale habitats (e.g., large-scale field plots and micro-habitats)-this study developed a comprehensively annotated ultra-high-resolution remote sensing image dataset encompassing 15 categories of cultivated land system habitats. Furthermore, we propose a Dynamic-Weighted Feature Fusion Network (DWFF-Net). The encoder of this model utilizes a frozen-parameter DINOv3 to extract foundational features. By analyzing the relationships between different category images and feature maps, we introduce a data-level adaptive dynamic weighting strategy for feature fusion. The decoder incorporates a dynamic weight computation network to achieve thorough integration of multi-layer features, and a hybrid loss function is adopted to optimize model training. Experimental results on the constructed dataset demonstrate that the proposed model achieves a mean Intersection over Union (mIoU) of 69.79% and an F1-score of 80.49%, outperforming the baseline network by 2.1% and 1.61%, respectively. Ablation studies further confirm the complementary nature of multi-layer feature fusion, which effectively improves the IoU for micro-habitat categories such as field ridges. This study establishes a habitat identification framework for cultivated land systems based on adaptive multi-layer feature fusion, enabling sub-meter precision habitat mapping at a low cost and providing robust technical support for fine-grained habitat monitoring in cultivated landscapes. (The complete code repository can be accessed via GitHub at the following URL: https://github.com/sysau/DWFF-Net)


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员