In social choice theory, anonymity (all agents being treated equally) and neutrality (all alternatives being treated equally) are widely regarded as ``minimal demands'' and ``uncontroversial'' axioms of equity and fairness. However, the ANR impossibility -- there is no voting rule that satisfies anonymity, neutrality, and resolvability (always choosing one winner) -- holds even in the simple setting of two alternatives and two agents. How to design voting rules that optimally satisfy anonymity, neutrality, and resolvability remains an open question. We address the optimal design question for a wide range of preferences and decisions that include ranked lists and committees. Our conceptual contribution is a novel and strong notion of most equitable refinements that optimally preserves anonymity and neutrality for any irresolute rule that satisfies the two axioms. Our technical contributions are twofold. First, we characterize the conditions for the ANR impossibility to hold under general settings, especially when the number of agents is large. Second, we propose the most-favorable-permutation (MFP) tie-breaking to compute a most equitable refinement and design a polynomial-time algorithm to compute MFP when agents' preferences are full rankings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月4日
Arxiv
0+阅读 · 2023年9月3日
Arxiv
0+阅读 · 2023年9月1日
Arxiv
24+阅读 · 2022年2月4日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年9月4日
Arxiv
0+阅读 · 2023年9月3日
Arxiv
0+阅读 · 2023年9月1日
Arxiv
24+阅读 · 2022年2月4日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员