How is it that humans can solve complex planning tasks so efficiently despite limited cognitive resources? One reason is its ability to know how to use its limited computational resources to make clever choices. We postulate that people learn this ability from trial and error (metacognitive reinforcement learning). Here, we systematize models of the underlying learning mechanisms and enhance them with more sophisticated additional mechanisms. We fit the resulting 86 models to human data collected in previous experiments where different phenomena of metacognitive learning were demonstrated and performed Bayesian model selection. Our results suggest that a gradient ascent through the space of cognitive strategies can explain most of the observed qualitative phenomena, and is therefore a promising candidate for explaining the mechanism underlying metacognitive learning.


翻译:人类如何在认知资源有限的情况下能够如此高效地解决复杂的规划任务?一个原因是,人类有能力知道如何利用其有限的计算资源作出明智的选择。我们假设人们从试验和错误中学习这种能力(混合强化学习 ) 。在这里,我们将基础学习机制模型系统化,并用更先进的额外机制加强这些模型。我们把由此产生的86个模型与以往实验中收集的人类数据相匹配,这些实验展示了不同的元认知学习现象,并进行了巴耶斯模式选择。我们的结果表明,通过认知战略空间的梯度增益可以解释大多数观察到的质量现象,因此,我们是解释元认知学习机制的有希望的候选者。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
66+阅读 · 2021年6月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
66+阅读 · 2021年6月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员