Chebyshev Filtered Subspace Iteration (ChFSI) has been widely adopted for computing a small subset of extreme eigenvalues in large sparse matrices. This work introduces a residual-based reformulation of ChFSI, referred to as R-ChFSI, designed to accommodate inexact matrix-vector products while maintaining robust convergence properties. By reformulating the traditional Chebyshev recurrence to operate on residuals rather than eigenvector estimates, the R-ChFSI approach effectively suppresses the errors made in matrix-vector products, improving the convergence behaviour for both standard and generalized eigenproblems. This ability of R-ChFSI to be tolerant to inexact matrix-vector products allows one to incorporate approximate inverses for large-scale generalized eigenproblems, making the method particularly attractive where exact matrix factorizations or iterative methods become computationally expensive for evaluating inverses. It also allows us to compute the matrix-vector products in lower-precision arithmetic allowing us to leverage modern hardware accelerators. Through extensive benchmarking, we demonstrate that R-ChFSI achieves desired residual tolerances while leveraging low-precision arithmetic. For problems with millions of degrees of freedom and thousands of eigenvalues, R-ChFSI attains final residual norms in the range of 10$^{-12}$ to 10$^{-14}$, even with FP32 and TF32 arithmetic, significantly outperforming standard ChFSI in similar settings. In generalized eigenproblems, where approximate inverses are used, R-ChFSI achieves residual tolerances up to ten orders of magnitude lower, demonstrating its robustness to approximation errors. Finally, R-ChFSI provides a scalable and computationally efficient alternative for solving large-scale eigenproblems in high-performance computing environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员