Transformer models have been developed in molecular science with excellent performance in applications including quantitative structure-activity relationship (QSAR) and virtual screening (VS). Compared with other types of models, however, they are large, which results in a high hardware requirement to abridge time for both training and inference processes. In this work, cross-layer parameter sharing (CLPS), and knowledge distillation (KD) are used to reduce the sizes of transformers in molecular science. Both methods not only have competitive QSAR predictive performance as compared to the original BERT model, but also are more parameter efficient. Furthermore, by integrating CLPS and KD into a two-state chemical network, we introduce a new deep lite chemical transformer model, DeLiCaTe. DeLiCaTe captures general-domains as well as task-specific knowledge, which lead to a 4x faster rate of both training and inference due to a 10- and 3-times reduction of the number of parameters and layers, respectively. Meanwhile, it achieves comparable performance in QSAR and VS modeling. Moreover, we anticipate that the model compression strategy provides a pathway to the creation of effective generative transformer models for organic drug and material design.


翻译:在分子科学中开发了分子变异模型,在应用方面表现优异,包括定量结构-活动关系(QSAR)和虚拟筛选(VS),但与其他类型模型相比,这些模型规模很大,导致培训和推断过程的缩短时间需要大量硬件;在这项工作中,跨层参数共享(CLPS)和知识蒸馏(KD)被用于减少分子科学中变异器的大小;这两种方法不仅具有与原BERT模型相比具有竞争性的QSAR预测性能,而且具有更高的参数效率;此外,通过将CLPS和KD纳入一个两州化学网络,我们采用了一个新的深层的利特化学变异器模型DeLiCaTe. DeLiCaTe. DeLiCaTe 捕捉到一般领域和特定任务知识,这导致培训速度和推论速度加快4x,因为参数和层次分别减少了10和3倍。此外,通过将CLS和VS模型纳入两个州化学网络,我们采用了一种新的深度化学变异化器模型,我们预测了一种有效的有机材料设计模型。此外,我们预测了一种模型的模型为有机材料的创建模式。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员