Spoken Language Understanding (SLU) is a task that aims to extract semantic information from spoken utterances. Previous research has made progress in end-to-end SLU by using paired speech-text data, such as pre-trained Automatic Speech Recognition (ASR) models or paired text as intermediate targets. However, acquiring paired transcripts is expensive and impractical for unwritten languages. On the other hand, Textless SLU extracts semantic information from speech without utilizing paired transcripts. However, the absence of intermediate targets and training guidance for textless SLU often results in suboptimal performance. In this work, inspired by the content-disentangled discrete units from self-supervised speech models, we proposed to use discrete units as intermediate guidance to improve textless SLU performance. Our method surpasses the baseline method on five SLU benchmark corpora. Additionally, we find that unit guidance facilitates few-shot learning and enhances the model's ability to handle noise.


翻译:暂无翻译

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
51+阅读 · 2022年10月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员