The syntactic nature of logic and computation separates them from other fields of mathematics. Nevertheless, syntax has been the only way to adequately capture the dynamics of proofs and programs such as cut-elimination, and the finiteness and the atomicity of syntax are preferable for foundational aims as seen in Hilbert's program. Another issue is that a uniform basis for logic and computation has been missing, and this problem hampers a coherent view on them. For instance, formal proofs in proof theory are far from (ordinary) proofs of the validity of a formula in model theory. Our goal is to solve these fundamental problems by rebuilding central concepts in logic and computation such as formal systems, validity (in such a way that it coincides with the existence of proofs), cut-elimination and computability uniformly in terms of finite graphs based on game semantics. Unlike game semantics, however, we do not rely on anything infinite or extrinsic to the graphs. A key idea that enables our finitary, autonomous approach is the shift from graphs in game semantics to dynamic ones. The resulting combinatorics establishes a single, syntax-free, finitary framework that recasts formal systems admitting proofs with cuts, validity, the finest computational steps of cut-elimination and higher-order computability. This subsumes fully complete semantics of intuitionistic linear logic, which solves a problem open for thirty years, and even extends the full completeness to proofs with cuts. As a byproduct, our dynamic graphs give rise to Hopf algebras, which opens up new applications of algebras to logic and computation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员