Motivated by recent progress in quantum hardware and algorithms researchers have developed quantum heuristics for optimization problems, aiming for advantages over classical methods. To date, quantum hardware is still error-prone and limited in size such that quantum heuristics cannot be scaled to relevant problem sizes and are often outperformed by their classical counterparts. Moreover, if provably optimal solutions are desired, one has to resort to classical exact methods. As however quantum technologies may improve considerably in future, we demonstrate in this work how quantum heuristics with limited resources can be integrated in large-scale exact optimization algorithms for NP-hard problems. To this end, we consider vehicle routing as prototypical NP-hard problem. We model the pricing and separation subproblems arising in a branch-price-and-cut algorithm as quadratic unconstrained binary optimization problems. This allows to use established quantum heuristics like quantum annealing or the quantum approximate optimization algorithm for their solution. A key feature of our algorithm is that it profits not only from the best solution returned by the quantum heuristic but from all solutions below a certain cost threshold, thereby exploiting the inherent randomness is quantum algorithms. Moreover, we reduce the requirements on quantum hardware since the subproblems, which are solved via quantum heuristics, are smaller than the original problem. We provide an experimental study comparing quantum annealing to simulated annealing and to established classical algorithms in our framework. While our hybrid quantum-classical approach is still outperformed by purely classical methods, our results reveal that both pricing and separation may be well suited for quantum heuristics if quantum hardware improves.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员