Consider the regression problem where the response $Y\in\mathbb{R}$ and the covariate $X\in\mathbb{R}^d$ for $d\geq 1$ are \textit{unmatched}. Under this scenario, we do not have access to pairs of observations from the distribution of $(X, Y)$, but instead, we have separate datasets $\{Y_i\}_{i=1}^n$ and $\{X_j\}_{j=1}^m$, possibly collected from different sources. We study this problem assuming that the regression function is linear and the noise distribution is known or can be estimated. We introduce an estimator of the regression vector based on deconvolution and demonstrate its consistency and asymptotic normality under an identifiability assumption. In the general case, we show that our estimator (DLSE: Deconvolution Least Squared Estimator) is consistent in terms of an extended $\ell_2$ norm. Using this observation, we devise a method for semi-supervised learning, i.e., when we have access to a small sample of matched pairs $(X_k, Y_k)$. Several applications with synthetic and real datasets are considered to illustrate the theory.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月31日
Arxiv
0+阅读 · 2023年10月29日
VIP会员
相关VIP内容
【2022新书】数据科学的实用线性代数,328页pdf
专知会员服务
138+阅读 · 2022年9月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员