We study the sorting-based embedding $\beta_{\mathbf A} : \mathbb R^{n \times d} \to \mathbb R^{n \times D}$, $\mathbf X \mapsto {\downarrow}(\mathbf X \mathbf A)$, where $\downarrow$ denotes column wise sorting of matrices. Such embeddings arise in graph deep learning where outputs should be invariant to permutations of graph nodes. Previous work showed that for large enough $D$ and appropriate $\mathbf A$, the mapping $\beta_{\mathbf A}$ is injective, and moreover satisfies a bi-Lipschitz condition. However, two gaps remain: firstly, the optimal size $D$ required for injectivity is not yet known, and secondly, no estimates of the bi-Lipschitz constants of the mapping are known. In this paper, we make substantial progress in addressing both of these gaps. Regarding the first gap, we improve upon the best known upper bounds for the embedding dimension $D$ necessary for injectivity, and also provide a lower bound on the minimal injectivity dimension. Regarding the second gap, we construct matrices $\mathbf A$, so that the bi-Lipschitz distortion of $\beta_{\mathbf A} $ depends quadratically on $n$, and is completely independent of $d$. We also show that the distortion of $\beta_{\mathbf A}$ is necessarily at least in $\Omega(\sqrt{n})$. Finally, we provide similar results for variants of $\beta_{\mathbf A}$ obtained by applying linear projections to reduce the output dimension of $\beta_{\mathbf A}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年12月9日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员