Kemeny's rule is one of the most studied and well-known voting schemes with various important applications in computational social choice and biology. Recently, Kemeny's rule was generalized via a set-wise approach by Gilbert et. al. Following this paradigm, we have shown in \cite{Phung-Hamel-2023} that the $3$-wise Kemeny voting scheme induced by the $3$-wise Kendall-tau distance presents interesting advantages in comparison with the classical Kemeny rule. While the $3$-wise Kemeny problem, which consists of computing the set of $3$-wise consensus rankings of a voting profile, is NP-hard, we establish in this paper several generalizations of the Major Order Theorems, as obtained in \cite{Milosz-Hamel-2020} for the classical Kemeny rule, for the $3$-wise Kemeny voting scheme to achieve a substantial search space reduction by efficiently determining in polynomial time the relative orders of pairs of alternatives. Essentially, our theorems quantify precisely the non-trivial property that if the preference for an alternative over another one in an election is strong enough, not only in the head-to-head competition but even when taking into consideration one or two more alternatives, then the relative order of these two alternatives in every $3$-wise consensus ranking must be as expected. Moreover, we show that the well-known $3/4$-majority rule of Betzler et al. for the classical Kemeny rule is only valid for elections with no more than $5$ alternatives with respect to the $3$-wise Kemeny scheme. Examples are also provided to show that the $3$-wise Kemeny rule is more resistant to manipulation than the classical one.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员