We consider the problem of multilingual unsupervised machine translation, translating to and from languages that only have monolingual data by using auxiliary parallel language pairs. For this problem the standard procedure so far to leverage the monolingual data is back-translation, which is computationally costly and hard to tune. In this paper we propose instead to use denoising adapters, adapter layers with a denoising objective, on top of pre-trained mBART-50. In addition to the modularity and flexibility of such an approach we show that the resulting translations are on-par with back-translating as measured by BLEU, and furthermore it allows adding unseen languages incrementally.


翻译:我们考虑的是多语种、不受监督的机器翻译、笔译和笔译问题,这些语言只有单一语言数据,使用辅助平行语言对口。对于这个问题,迄今为止利用单一语言数据的标准程序是回译,这是计算成本高、难以调和的。在本文中,我们建议除使用预先培训的MBART-50外,再使用拆译适应器、具有分解目标的适配层。除了这种方法的模块性和灵活性外,我们还表明由此产生的翻译与BLEU衡量的反译是平行的,而且允许逐步增加隐性语言。

0
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
36+阅读 · 2020年3月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员