In recent years, hierarchical case-based-reasoning models of precedential constraint have been proposed. In various papers, Trevor Bench-Capon criticised these models on the grounds that they would give incorrect outcomes in some cases. In particular, the models would not account for the possibility that intermediate factors are established with different strengths by different base-level factors. In this paper we respond to these criticisms for van Woerkom's result-based hierarchical models. We argue that in some examples Bench-Capon seems to interpret intermediate factors as dimensions, and that applying van Woerkom's dimension-based version of the hierarchical result model to these examples avoids Bench-Capon's criticisms.


翻译:近年来,关于判例约束的层次化案例推理模型被提出。Trevor Bench-Capon 在多篇论文中批评这些模型,认为它们在特定情况下会得出错误结果。具体而言,这些模型未能解释中间因素可能由不同基础因素以不同强度确立的可能性。本文针对 van Woerkom 基于结果的层次化模型回应了这些批评。我们认为,Bench-Capon 在某些示例中将中间因素误解为维度,而将 van Woerkom 基于维度的层次化结果模型应用于这些示例时,可避免 Bench-Capon 的批评。

0
下载
关闭预览

相关内容

【普林斯顿博士论文】图机器学习,137页pdf
专知会员服务
43+阅读 · 2024年5月1日
【NeurIPS2023】因果成分分析
专知会员服务
41+阅读 · 2023年11月13日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员