Let $(X,\mathcal{E})$ be a hypergraph. A support is a graph $Q$ on $X$ such that for each $E\in\mathcal{E}$, the subgraph of $Q$ induced on the elements in $E$ is connected. We consider the problem of constructing a support for hypergraphs defined by connected subgraphs of a host graph. For a graph $G=(V,E)$, let $\mathcal{H}$ be a set of connected subgraphs of $G$. Let the vertices of $G$ be partitioned into two sets the \emph{terminals} $\mathbf{b}(V)$ and the \emph{non-terminals} $\mathbf{r}(V)$. We define a hypergraph on $\mathbf{b}(V)$, where each $H\in\mathcal{H}$ defines a hyperedge consisting of the vertices of $\mathbf{b}(V)$ in $H$. We also consider the problem of constructing a support for the \emph{dual hypergraph} - a hypergraph on $\mathcal{H}$ where each $v\in \mathbf{b}(V)$ defines a hyperedge consisting of the subgraphs in $\mathcal{H}$ containing $v$. In fact, we construct supports for a common generalization of the primal and dual settings called the \emph{intersection hypergraph}. As our main result, we show that if the host graph $G$ has bounded genus and the subgraphs in $\mathcal{H}$ satisfy a condition of being \emph{cross-free}, then there exists a support that also has bounded genus. Our results are a generalization of the results of Raman and Ray (Rajiv Raman, Saurabh Ray: Constructing Planar Support for Non-Piercing Regions. Discret. Comput. Geom. 64(3): 1098-1122 (2020)). Our techniques imply a unified analysis for packing and covering problems for hypergraphs defined on surfaces of bounded genus. We also describe applications of our results for hypergraph colorings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员