This work introduces (1) a technique that allows large language models (LLMs) to leverage user-provided code when solving programming tasks and (2) a method to iteratively generate modular sub-functions that can aid future code generation attempts when the initial code generated by the LLM is inadequate. Generating computer programs in general-purpose programming languages like Python poses a challenge for LLMs when instructed to use code provided in the prompt. Code-specific LLMs (e.g., GitHub Copilot, CodeLlama2) can generate code completions in real-time by drawing on all code available in a development environment. However, restricting code-specific LLMs to use only in-context code is not straightforward, as the model is not explicitly instructed to use the user-provided code and users cannot highlight precisely which snippets of code the model should incorporate into its context. Moreover, current systems lack effective recovery methods, forcing users to iteratively re-prompt the model with modified prompts until a sufficient solution is reached. Our method differs from traditional LLM-powered code-generation by constraining code-generation to an explicit function set and enabling recovery from failed attempts through automatically generated sub-functions. When the LLM cannot produce working code, we generate modular sub-functions to aid subsequent attempts at generating functional code. A by-product of our method is a library of reusable sub-functions that can solve related tasks, imitating a software team where efficiency scales with experience. We also introduce a new "half-shot" evaluation paradigm that provides tighter estimates of LLMs' coding abilities compared to traditional zero-shot evaluation. Our proposed evaluation method encourages models to output solutions in a structured format, decreasing syntax errors that can be mistaken for poor coding ability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月16日
Arxiv
0+阅读 · 2024年1月12日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员