In this report, we descibe our approach to the ECCV 2020 VIPriors Object Detection Challenge which took place from March to July in 2020. We show that by using state-of-the-art data augmentation strategies, model designs, and post-processing ensemble methods, it is possible to overcome the difficulty of data shortage and obtain competitive results. Notably, our overall detection system achieves 36.6$\%$ AP on the COCO 2017 validation set using only 10K training images without any pre-training or transfer learning weights ranking us 2nd place in the challenge.


翻译:在本报告中,我们对2020年3月至7月发生的ECCV 2020 V V VVIPR目标探测挑战的处理方式有所否认,我们表明,通过使用最新数据增强战略、模型设计和后处理合用方法,有可能克服数据短缺的困难并取得竞争性结果,值得注意的是,我们的总体检测系统在COCO 2017验证系统上只使用10K个培训图像,而没有培训前或转让学习权重,在挑战中排在第二位。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
ActivityNet Challenge 2017 冠军方案分享
极市平台
4+阅读 · 2017年7月25日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
ActivityNet Challenge 2017 冠军方案分享
极市平台
4+阅读 · 2017年7月25日
相关论文
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Top
微信扫码咨询专知VIP会员