In plant breeding and variety testing, there is an increasing interest in making use of environmental information to enhance predictions for new environments. Here, we will review linear mixed models that have been proposed for this purpose. The emphasis will be on predictions and on methods to assess the uncertainty of predictions for new environments. Our point of departure is straight-line regression, which may be extended to multiple environmental covariates and genotype-specific responses. When observable environmental covariates are used, this is also known as factorial regression. Early work along these lines can be traced back to Stringfield & Salter (1934) and Yates & Cochran (1938), who proposed a method nowadays best known as Finlay-Wilkinson regression. This method, in turn, has close ties with regression on latent environmental covariates and factor-analytic variance-covariance structures for genotype-environment interaction. Extensions of these approaches - reduced rank regression, kernel- or kinship-based approaches, random coefficient regression, and extended Finlay-Wilkinson regression - will be the focus of this paper. Our objective is to demonstrate how seemingly disparate methods are very closely linked and fall within a common model-based prediction framework. The framework considers environments as random throughout, with genotypes also modelled as random in most cases. We will discuss options for assessing uncertainty of predictions, including cross validation and model-based estimates of uncertainty, the latter one being estimated using our new suggested approach. The methods are illustrated using a long-term rice variety trial dataset from Bangladesh.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员