In this work we consider the HYBRID model of distributed computing, introduced recently by Augustine, Hinnenthal, Kuhn, Scheideler, and Schneider (SODA 2020), where nodes have access to two different communication modes: high-bandwidth local communication along the edges of the graph and low-bandwidth all-to-all communication, capturing the non-uniform nature of modern communication networks. Prior work in HYBRID has focused on showing existentially optimal algorithms, meaning there exists a pathological family of instances on which no algorithm can do better. This neglects the fact that such worst-case instances often do not appear or can be actively avoided in practice. In this work, we focus on the notion of universal optimality, first raised by Garay, Kutten, and Peleg (FOCS 1993). Roughly speaking, a universally optimal algorithm is one that, given any input graph, runs as fast as the best algorithm designed specifically for that graph. We show the first universally optimal algorithms in HYBRID. We present universally optimal solutions for fundamental information dissemination tasks, such as broadcasting and unicasting multiple messages in HYBRID. Furthermore, we apply these tools to obtain universally optimal solutions for various shortest paths problems in HYBRID. A main conceptual contribution of this work is the conception of a new graph parameter called neighborhood quality that captures the inherent complexity of many fundamental graph problems in HYBRID. We also show new existentially optimal shortest paths algorithms in HYBRID, which are utilized as key subroutines in our universally optimal algorithms and are of independent interest. Our new algorithms for $k$-source shortest paths match the existing $\tilde{\Omega}(\sqrt{k})$ lower bound for all $k$. Previously, the lower bound was only known to be tight when $k \in \tilde{\Omega}(n^{2/3})$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员