In the upcoming B5G/6G era, virtual reality (VR) over wireless has become a typical application, which is an inevitable trend in the development of video. However, in immersive and interactive VR experiences, VR services typically exhibit high delay, while simultaneously posing challenges for the energy consumption of local devices. To address these issues, this paper aims to improve the performance of the VR service in the edge-terminal cooperative system. Specifically, we formulate a problem of joint caching, computing, and communication VR service policy, by optimizing the weighted sum of overall VR delivery delay and energy consumption of local devices. For the purpose of designing the optimal VR service policy, the optimization problem is decoupled into three independent subproblems to be solved separately. To enhance the caching efficiency within the network, a bidirectional encoder representations from transformers (Bert)-based user interest analysis method is first proposed to characterize the content requesting behavior accurately. On the basis of this, a service cost minimum-maximization problem is formulated with consideration of performance fairness among users. Thereafter, the joint caching and computing scheme is derived for each user with given allocation of communication resources while a bisection-based communication scheme is acquired with the given information on joint caching and computing policy. With alternative optimization, an optimal policy for joint caching, computing and communication based on user interest can be finally obtained. Simulation results are presented to demonstrate the superiority of the proposed user interest-aware caching scheme and the effective of the joint caching, computing and communication optimization policy with consideration of user fairness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员