Ensemble methods are widely employed to improve generalization in machine learning. This has also prompted the adoption of ensemble learning for the knowledge graph embedding (KGE) models in performing link prediction. Typical approaches to this end train multiple models as part of the ensemble, and the diverse predictions are then averaged. However, this approach has some significant drawbacks. For instance, the computational overhead of training multiple models increases latency and memory overhead. In contrast, model merging approaches offer a promising alternative that does not require training multiple models. In this work, we introduce model merging, specifically weighted averaging, in KGE models. Herein, a running average of model parameters from a training epoch onward is maintained and used for predictions. To address this, we additionally propose an approach that selectively updates the running average of the ensemble model parameters only when the generalization performance improves on a validation dataset. We evaluate these two different weighted averaging approaches on link prediction tasks, comparing the state-of-the-art benchmark ensemble approach. Additionally, we evaluate the weighted averaging approach considering literal-augmented KGE models and multi-hop query answering tasks as well. The results demonstrate that the proposed weighted averaging approach consistently improves performance across diverse evaluation settings.


翻译:集成方法在机器学习中被广泛用于提升泛化性能,这也促使知识图谱嵌入模型在链接预测任务中采用集成学习。典型方法通过训练多个模型构成集成,并对多样化的预测结果进行平均。然而,该方法存在显著缺陷,例如训练多个模型带来的计算开销会增加延迟和内存负担。相比之下,模型融合方法提供了一种无需训练多个模型的有前景的替代方案。本研究在知识图谱嵌入模型中引入模型融合方法,特别是加权平均法。该方法通过维护训练周期内模型参数的滑动平均值并用于预测。为此,我们进一步提出一种选择性更新策略:仅当集成模型参数在验证数据集上的泛化性能提升时,才更新其滑动平均值。我们在链接预测任务中评估了这两种不同的加权平均方法,并与当前最先进的基准集成方法进行对比。此外,我们还评估了加权平均方法在字面增强知识图谱嵌入模型和多跳查询应答任务中的表现。实验结果表明,所提出的加权平均方法在不同评估场景中均能持续提升性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
28+阅读 · 2021年5月17日
Arxiv
38+阅读 · 2020年12月2日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
28+阅读 · 2021年5月17日
Arxiv
38+阅读 · 2020年12月2日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员