We study a sequential binary prediction setting where the forecaster is evaluated in terms of the calibration distance, which is defined as the $L_1$ distance between the predicted values and the set of predictions that are perfectly calibrated in hindsight. This is analogous to a calibration measure recently proposed by B{\l}asiok, Gopalan, Hu and Nakkiran (STOC 2023) for the offline setting. The calibration distance is a natural and intuitive measure of deviation from perfect calibration, and satisfies a Lipschitz continuity property which does not hold for many popular calibration measures, such as the $L_1$ calibration error and its variants. We prove that there is a forecasting algorithm that achieves an $O(\sqrt{T})$ calibration distance in expectation on an adversarially chosen sequence of $T$ binary outcomes. At the core of this upper bound is a structural result showing that the calibration distance is accurately approximated by the lower calibration distance, which is a continuous relaxation of the former. We then show that an $O(\sqrt{T})$ lower calibration distance can be achieved via a simple minimax argument and a reduction to online learning on a Lipschitz class. On the lower bound side, an $\Omega(T^{1/3})$ calibration distance is shown to be unavoidable, even when the adversary outputs a sequence of independent random bits, and has an additional ability to early stop (i.e., to stop producing random bits and output the same bit in the remaining steps). Interestingly, without this early stopping, the forecaster can achieve a much smaller calibration distance of $\mathrm{polylog}(T)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员